Covering all points except one

نویسنده

  • T. Szőnyi
چکیده

In many point-line geometries, to cover all points except one, more lines are needed than to cover all points. Bounds can be given by looking at the dimension of the space of functions induced by polynomials of bounded degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Paths and Trees for Planar Grids

Given a set of points in the plane, a covering path is a polygonal path that visits all the points. In this paper we consider covering paths of the vertices of an n×m grid. We show that the minimal number of segments of such a path is 2min(n,m)−1 except when we allow crossings and n = m ≥ 3, in which case the minimal number of segments of such a path is 2min(n,m)−2, i.e., in this case we can sa...

متن کامل

Computation of highly ramified coverings

An almost Belyi covering is an algebraic covering of the projective line, such that all ramified points except one simple ramified point lie above a set of 3 points of the projective line. In general, there are 1-dimensional families of these coverings with a fixed ramification pattern. (That is, Hurwitz spaces for these coverings are curves.) In this paper, three almost Belyi coverings of degr...

متن کامل

Covering Space in the Besicovitch Topology

This paper studies how one can spread points in the Besicovitch space in order to keep them far one from another. We first study the general case and then what happens if the chosen points are all regular Toeplitz configurations or all quasiperiodic configurations.

متن کامل

The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings

The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.

متن کامل

Two-dimensional minimax Latin hypercube designs

We investigate minimax Latin hypercube designs in two dimensions for several distance measures. For the `-distance we are able to construct minimax Latin hypercube designs of n points, and to determine the minimal covering radius, for all n. For the `1-distance we have a lower bound for the covering radius, and a construction of minimax Latin hypercube designs for (infinitely) many values of n....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008